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Abstract. Tight-binding (TB) methods are designed to work for neutral systems. When an
electron is added to or subtracted from the system, or when an external field is applied to the
system, one should handle the problem of screening and charge redistribution in a self-consistent
manner. Here, we have proposed a simple way to calculate the potential due to an external field
and the corrected Hartree potential. A straightforward way to compute the Coulomb (Hubbard)
integrals for any atom is also demonstrated. This formalism has been tested againstab initio
calculations for carbon C20 and silicon Si12 clusters. Good agreement betweenab initio and
self-consistent TB results is found.

1. Introduction

Due to the computing limitation of first-principles density functional (DF) methods, many
researchers use the tight-binding (TB) method to calculate electronic and mechanical
properties of materials, and more specifically large clusters such as fullerenes. Unlike
in ab initio methods, the tight-binding Hamiltonian is ‘blind’ as regards the charge of the
system. In other words, it predicts the same eigenvalues and eigenvectors for a system
of any charge. The only difference between these systems is their occupation number,
which would yield different total energies and forces. But adding an electron to the system
changes the Hamiltonian by adding a repulsive Coulomb interaction between the electrons;
as a result, the electronic eigenvalues will be shifted upwards. Furthermore, for a charge-
neutral system, the TB method is unable to properly take into account the screening of
an external field. On the other hand, it is well known that the shortcoming of the TB
method is its not-so-good transferability even if one uses a non-orthogonal basis. Indeed,
the response of the electrons would be different to the field created by different atomic
environments. The electron density on a given atom could be low or high depending on
the amount of charge transfer; this in turn would affect the potential via Poisson’s equation,
and therefore the Hamiltonian matrix elements. In some of the literature, this is called the
charge-transfer effect, and, to overcome this, anad hocHubbard-like term is usually added
to the Hamiltonian [1–3]. This requires a self-consistent solution of the problem, since
the Hubbard term is linear in the change in the charge density, which itself depends on
the eigenfunctions of the Hamiltonian. The Hubbard coefficientU is usually determined
empirically by a fitting to theab initio data for the dimer or other structures with different
environments, for example. The addition of such a term is in fact crucial in ensuring
good transferability of a given parametrization even if it is a non-orthogonal one. It is
the purpose of this paper to include such effects, in a more quantitative way, into the
tight-binding formalism in order to circumvent all of the problems mentioned above.
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In what follows, the physical origin of this term will be established by looking at the
effect of the addition of a charge, and we will show how the Hubbard parameters can
be found. Finally, the results of this treatment will be illustrated by considering a few
examples: the TB results for charged systems will be compared toab initio calculations for
C20 corranulene, and icosahedral Si12.

2. Theory

Let us consider the Hamiltonian of a finite system in the neutral configuration, and denote
it by H0. The addition of an electron will add an electrostatic Coulomb term and an
exchange–correlation (XC) term to it. (Here we are considering a one-electron Hamiltonian,
and therefore use the appropriate language for describing the Coulomb interaction.) In the
mean-field or first-order perturbation theory, one considers the average of the perturbation
in an eigenstate to obtain the shift in the corresponding eigenvalue. This first-order shift can
be interpreted as the electrostatic interaction between the added electron and the electronic
charge distribution of the eigenstate considered. The change in the exchange–correlation
potential is neglected.

After expanding this eigenstate in the TB basis functions:

|ψλ〉 =
∑
iα

Cλiα|φiα〉

one finds, for a negatively charged system for example, the following expression for the
shift in the eigenvalues due to the electrostatic field of the added chargeδρ:

ελ − ε0
λ = 〈ψλ|δH |ψλ〉 = 〈ψλ(r)|

∫
δρ(r ′)
|r − r ′| dr ′ |ψλ(r)〉 (1)

=
∫
ρλ(r) δρ(r

′)
|r − r ′| dr dr ′ (2)

=
∑

iα,jβ,kγ,lδ

Cλ∗iα C
λ
jβC

N+1
kγ

∗CN+1
lδ U

αβ,γ δ

ij,kl . (3)

The added charge (δρ) will fill the lowest unoccupied molecular orbital (LUMO), denoted
here as orbitalN + 1. The Coulomb integralU is defined as

U
αβ,γ δ

ij,kl =
∫
φ∗iα(r)φjβ(r)

1

|r − r ′|φ
∗
kγ (r

′)φlδ(r ′) dr dr ′. (4)

The orbitalsφ are assumed to be real; the Roman indicesi, j, k, l refer to atomic sites, and
the Greek indices to their orbitals. The parameterU , usually referred to as the Hubbard
parameter for historical reasons, represents the Coulomb interaction kernel 1/|r − r ′|, but it
is represented by a tensorUαβ,γ δ

ij,kl once a basis is adopted for representing the Hamiltonian
and the charge density.

The added charge will affect the ground-state charge distribution itself, and, therefore,
instead of considering first-order perturbation theory, one can calculate the matrix elements
of the new perturbed Hamiltonian, and diagonalize it numerically and self-consistently to
obtain the exact shift of the eigenvalues. This approach, allowing for the relaxation of the
ground-state charge density, will partially include correlation effects as well.

When expanding wavefunctions and densities in a basis (localized in this case), all
ground-state properties of the system can be written as a function of the density matrix,
defined by

%
αβ

ij =
∑
λ

nλC
λ∗
iα C

λ
jβ . (5)
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The sum overλ is over the eigenstates with occupationnλ = 2 (spin) for occupied states
and 0 for empty states. By using the density matrix, the change in the Hamiltonian operator
H and that in its matrixH can be written, respectively, as follows:

δH(r) =
∫

δρ(r ′)
|r − r ′| dr ′ (6)

δHαβij =
∑
kl,γ δ

U
αβ,γ δ

ij,kl (%
γ δ

kl − %0γ δ
kl ). (7)

Here, the superscript 0 refers to the neutral unperturbed ground state. It can be seen from
the above equation that the matrix element is a product of two terms: one is the two-particle
Coulomb integral, and the other factor is the change in the density matrix%

αβ

ij . If the latter
is diagonal, one recovers the often-used Hubbard termU(ni−n0

i ), which is the correction to
the Hartree potential, i.e. it represents the electrostatic Coulomb potential of the induced (or
added) charge. The additional Coulomb interaction was the reason for which, physically,
the above term needed to be added toH0. One can also see this mathematically, as the
matrix elements ofH0 were defined from a fit to crystalline band structures where there is
no charge transfer. Therefore, for a surface or a cluster, or a charged system, there must be
a correction to these matrix elements. To first order, this correction is linear in the charge
differenceδρ, andU can be seen as the proportionality constant in this expansion, which,
according to Taylor’s formula, should be the first derivative of the Hamiltonian with respect
to the charge density:

H(ρ) = H(ρ0)+ U δρ +O(δρ2).

Within the DF formalism,U is given by

UDF
ij,kl =

∫
φ∗i (r)φj (r)

(
∂vxc(r)

∂ρ(r ′)
+ 1

|r − r ′|
)
φ∗k (r

′)φl(r ′) d3r d3r ′ (8)

and, in Hartree–Fock (HF) theory, it is defined as

UHF
ij,kl =

∫
φ∗i (r)φj (r)φ

∗
k (r
′)φl(r ′)− 1

2φ
∗
i (r)φj (r

′)φ∗k (r
′)φl(r)

|r − r ′| d3r d3r ′ = Uij,kl − 1

2
Uil,kj .

(9)

Here the Greek superscripts have been dropped, buti, j, k, l can be thought of as basis
indices. Notice that we have still reservedU for the pure electrostatic Coulomb term
(equation (4)), and the term indicated in calligraphic font,U , includes the exchange–
correlation effects.

One can discuss the effect of exchange in a linear combination of atomic orbitals (LCAO)
HF formalism. Because of the small overlap, the exchange contribution is usually very small,
except when the four orbitals are localized on the same atom. The exchange, therefore,
appears only in the on-site terms ofU throughUαβ,αβ δ%ββ , and should be included if
Uαβ,αβ is large. In general, its effect becomes important when the off-diagonal terms of the
density matrix are large. Such is the case for metallic systems, where the density matrix is
long ranged; in this case too, this term must be included.

The other concept for which this treatment is relevant is that of the chemical hardness
[4]. It is defined as

ηλµ = ∂2E

∂nλ ∂nµ
(10)

wherenλ andnµ are the occupation numbers of the eigenstatesλ andµ. The first derivative
is of course the single-particle eigenvalueελ, and the second tells us how this eigenvalue
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changes as the occupation number of another levelµ is changed. This is exactly the shift
of the eigenvalues as the system is charged (e.g.ηλN+1). In other words, we had calculated
in equation (3) the chemical hardness by taking the stateµ as being the lowest unoccupied
state, andλ as any other state. The chemical hardness matrix allows one to predict the
effect of any charge transfer (or, more generally, any change in the occupation numbers)
on the eigenvalues of the system. It is related toU by

ηλµ =
∑

iα,jβ,kγ,lδ

Cλ∗iα C
λ
jβC

µ∗
kγ C

µ

lδU
αβ,γ δ

ij,kl (11)

and the shifts in the energy levels are given by

ελ = ε0
λ +

∑
µ

ηλµ(nµ − n0
µ). (12)

As one can see,η involves the eigenstates of the system, and therefore depends on the
specific system considered, although its atomic value has also been used in some of the
literature [5] in order to compute the charge transfer in neutral systems.

Appropriate screening of an external field can also be treated by this method. If one
approximates the matrix elements of the external field as follows:

〈iα|V |jβ〉 =
∫
φ∗iα(r)V (r)φjβ(r) dr ≈ 1

2
S
αβ

ij (V (Ri)+ V (Rj )) (13)

where Sαβij is the overlap matrix, the matrix elements of the perturbed Hamiltonian can
easily be calculated:

〈iα|δH |jβ〉 = 〈iα|V |jβ〉 +
∑
kl,γ δ

Uαβ,γ δij,kl (%
γ δ

kl − %0γ δ
kl ). (14)

The second term, the induced potential, which is the change ofH due to the change in the
charge density, involves the full Coulomb termU = ∂H/∂ρ, and not just the electrostatic
induced potential defined withU .

In usual TB formalisms, the total energy of the unperturbed system is a sum of a band
term (the sum of the occupied eigenvalues) and an empirical repulsive potential. This
potential substitutes for the residual terms in the total energy:

Erep(R1, . . . , RN) = Vion−ion− 1

2

∫
ρ(r)ρ(r ′)
|r − r ′| dr dr ′ + Exc[ρ] −

∫
vxc[ρ](r)ρ(r) dr.

(15)

When an electron is added to the system, this repulsive energy is modified due to the change
in the charge densityρ. Using the above definition ofErep, one can write the total energy
within this formalism as

E[ρ,R] = Tr ρH+ Erep[R] − 1

2

∫
ρ(r)ρ(r ′)− ρ0(r)ρ0(r ′)

|r − r ′| dr dr ′ + δ(XC corrections).

(16)

The first term, i.e. the sum of the eigenvalues of the perturbed system, includes the effect
of an external potential as well. The last two terms are necessary since they represent the
change in the Coulomb energy due to charging effects. Written in the TB basis, and using
the symmetry of the kernelU under exchange ofij andkl, it can be expressed as

1ECoulomb= 1

2

∑
iα,jβ,kγ,lδ

δ%
αβ

ij 6%
γδ

kl U
αβ,γ δ

ij,kl (17)
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where δ% = % − %0 and 6% = % + %0. It must be noted that this correction also
includes corrections to the exchange–correlation energy, since we have usedU and not
the electrostatic quantityU . The final expression for the total energy then reads

E[ρ,R] = Tr ρH0+ 1

2
δρ U δρ + Erep[R]. (18)

As an example, by using this formalism, we have treated the electronic structure of a
nanotube doped with donor and acceptor atoms modelled by point charges [6]. In usual
treatments, one just shifts up the Fermi level in order to take the effect of charge transfer
into account. The electrostatic field of the point charges is, however, neglected. We have
shown that including the impurities yields a result different from that obtained by the usual
treatment, especially as regards charge distribution.

3. Calculation of the Coulomb integralU

As we can see from equations (8) and (9), the integralU involves four atomsi, j, k, l
with four orbitals; it depends on the choice of the basis functions and not on the electronic
structure of the system considered (in the DF case, however, it would slightly depend on
the whole system as well, but we neglect this dependence). This integral will be small if
i 6= j or k 6= l since the overlap is then small. It has its largest value wheni = j = k = l;
we call this type of term an on-site term. We may further approximate the other terms in
general by

Uαβ,γ δij,kl '
1

4
S
αβ

ij S
γ δ

kl (U
αα,γ γ

ii,kk + Uββ,γ γjj,kk + Uαα,δδii,ll + Uββ,δδjj,ll ). (19)

ForUαα,γ γii,kk , one can either use the Ohno–Klopman form [8, 9], or just simply the following
formula:

Uαα,γ γii,kk =
[|Ri − Rk|2+ U−2

αα,γ γ

]−1/2
. (20)

In this way, we ensure that the Coulomb integral has the proper limits for large and small
distancesRik; that is, it goes to 1/R for largeR, and tends, forR = 0, to its atomic value
Uααγ γ which is typically of the order of the inverse of the atomic radius.

The approximation in equation (19) has been used for an arbitrary basis set; it further
reduces to a simpler form if the basis is orthonormal. Such is the case for the basis that we
have used for carbon [2] and silicon [7], where each atom has one 2s and three 2p orbitals.
One is left withUss,ss, Uss,pp, Upp,pp, Upp,p′p′ [10], Usp,sp, andUpp′,pp′ (the last two terms being
exchange integrals). Similarly, for transition metal elements with nine orbitals per atom,
one has to deal with more terms, the largest of which involve d orbitals, since they are more
localized. To obtain accurate values ofU , one could perform a fit toab initio results of a
given structure. We chose, however, to ‘fit’ the on-site terms ofU to the unbiasedatomic
calculation, since the on-site integrals do not depend much on the environment of the atom,
especially in a HF formulation. As will be shown later, the results are not very sensitive to
the exact values of the integrals, since a small error in a small effect does not amount to
much difference, as long as the values adopted are reasonable of course. Furthermore, the
fitting process is very simple for an atom.

In the case of an atom, the chemical hardness matrixη and the Coulomb integralU can
be identified (see equation (11)), since the basis indices are identical to the eigenstate indices.
It follows that exchange terms such asUsp,sp andUpp′,pp′ are identically zero for the atom;
the exchange effects are really being included inU itself, as can be seen from equations (8)
and (9). This, fortunately, reduces the number of parameters, and, anyway, since the TB
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parameters are usually derived from a fit to DF calculations where the exchange–correlation
potential is local, there is no need to include exchange integrals unless one is performing a
HF calculation.

Table 1. Values in eV of the on-site Hubbard terms for carbon and silicon.

Carbon Carbon Carbon Silicon
Parameter This work U (from [11]) U (from [11]) This work

ss, ss 10.83 11.43 16.2 8.16
ss, pp 10.37 — 14.0 7.37
sp, sp 0 — 2.30 0
pp, pp 9.93 11.11 14.6 6.76
pp, p′p′ 9.93 — 13.5 6.76
pp’, pp′ 0 — 0.54 0

We have performed atomic calculations based on the DF formalism (in the local density
approximation) for carbon and silicon atoms where the occupation numbers of the 2s and
2p levels were set to values that are real numbers near 2. In this way, one could obtain the
derivatives of the total energy with respect to the occupation numbers by the finite-difference
method. This in turn gives the chemical hardness matrixη via equation (10). The results
obtained for C and Si are displayed in table 1. One also has the option of carrying out
all calculations within the HF theory, and extracting from the chemical hardness matrix the
electrostatic Coulomb integrals defined in equation (4) by using equation (9). In any case, it
is possible to extract the on-site Coulomb integrals from an atomic calculation without much
difficulty. For magnetic systems this could be generalized within either an unrestricted HF
theory or a DF formalism, where one would have to consider two Hamiltonians, one for
each spin. Omitting basis indices and leaving only spin indices, theU -terms would then be
defined by

Hσ = H0
σ +

∑
σσ ′
Uσσ ′ δ%σ ′ (21)

whereH0
σ is a reference Hamiltonian matrix which does not necessarily need to depend

on σ (if, for example, it is fitted from a paramagnetic calculation). The same type of
interpolation as in equation (20) can then be used, and one would again end up with an
atomic calculation from which the spin-dependent on-site terms may easily be extracted.

Table 1 displays the values for the on-site parameters that we found for silicon and
carbon. In the third and fourth columns we give the values obtained for the screenedU -
and electrostaticU -integrals, respectively, from reference [11].

4. Numerical results

As a test sample, we considered C20 corranulene, the bowl-shaped carbon molecule, and
icosahedral Si12. In what follows, we compare the results ofab initio calculations on
singly and doubly charged molecules to the prediction of the present formalism using the
U -integrals described in the previous section. The geometries adopted are the same for
both types of calculation, and no further geometry optimization has been done, although
the addition of the charge would create some force, and slightly change the ground-state
structure of the molecules.
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Figure 1. (a) Energy shifts of C20 calculated from the present self-consistent TB method
compared toab initio ones calculated using Gaussian 94 (HF and Xα), and another TB parameter
set for U . The vertical line shows the highest occupied molecular orbital (HOMO) level.
(b) Charge shifts for two TB calculations and twoab initio calculations (HF and Xα). In
both cases, there is a good agreement between the HF results and the parameters taken from
Fulde’s book [11], and between the Xα results and our present parameters taken from a local
density approximation (LDA) atomic calculation.
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4.1. C20 corranulene

The often-used orthogonal parametrization of Xuet al [2] was adopted to treat the carbon
clusters. For the singly and doubly charged molecules, rigid upward shifts of, on average,
4.17 and 8.35 eV, respectively, were found. With the same coordinates, the program
Gaussian 94 [12], using the Xα exchange–correlation functional and ten basis functions per
carbon atom (the 3-21G basis set), has yielded respective shifts of 4.24 and 8.54 eV on
average. For comparison, Gaussian 94 was also run within the HF approximation with the
same 3-21G basis set. In this case, the shifts were slightly larger, except at the Fermi level,
as can be seen from figure 1. Using the electrostaticU -integrals yields a result similar to the
HF method, since the HF method also uses the same type of integral. Including exchange
or setting the on-site exchange integrals to zero, we find that the eigenvalues change by
less than 0.1 eV, even though one exchange integral is equal to 2.3 eV. This means that
the exchange terms that are of the order of 1 or 2 eV may be neglected, because the
density matrix has small on-site off-diagonal termsδ%αβii , and because the relevant factors
for determining the shifts are mainlyUss,ss, Uss,pp, andUpp,pp, which are of the same order.

One should note that the qualitative features of the eigenvalues of the neutral molecule
obtained by using TB andab initio methods are similar. Quantitatively, however, the three
calculations yield three different spectra. Even with the same number of basis functions,
different choices of the exchange–correlation potential give different results: the bandwidth
of the first 40 levels around the Fermi energy for C20 is about 33 eV for the HF calculation,
20 eV for TB calculation, and 18 eV for the DF theory calculation. In all cases, after
charging, one finds an almost rigid shift for all levels. In figure 1(b), the changes in the
charge distributions for both self-consistent TB (SCTB) and HF calculations are displayed.
Again, the charge distributions in the neutral case are slightly different, due to the different
numbers of basis functions, and the different methods. But the error in the change in
the charge distribution between those obtained using the TB method and the LDA is
comparatively very small. Similarly to the eigenvalue case, we find good agreement between
the shifts from our SCTB and Xα calculations on one hand, and between those from the
SCTB calculations made using parameters given by Fulde [11] and the HF method on the
other.

It is noteworthy that, previously, only one constant value ofU was included in the
treatment of charge transfer; its value was found empirically to be 4 eV for carbon systems
[2] and 1 or 2 eV for silicon. But, as we have shown in table 1, the atomic calculations
yield values that are almost three times these empirical values. For comparison, the shifts
of the SCTB eigenvalues were also calculated with this constant value ofU . We found a
considerable disagreement withab initio calculations for both eigenvalues and charge shifts.

4.2. TheSi12 icosahedral molecule

As a second example, a silicon cluster, Si12, with icosahedral symmetry, was also tested
[13]. The TB parameters were taken from reference [7], and have the same analytic distance
dependence as carbon. Again, the Coulomb integrals were taken from an identification with
the chemical hardness matrix obtained from a LDA atomic calculation (see the last column
of table 1). In this instance too, good agreement was found between the TB results and the
DF-LDA Xα ones calculated using Gaussian 94; the shift due to the addition of a single
electron was found to be 3.93 eV in the former case and 3.78 eV in the latter case. The
results obtained for the energy and charge shifts are displayed in figures 2(a) and 2(b)
respectively.
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Figure 2. (a) Energy shifts of Si12 calculated from the present SCTB method compared to
ab initio ones calculated using Gaussian 94. The vertical line shows the HOMO level. (b) As
(a), but for charge shifts.

5. Conclusions

The inclusion of a Hubbard term is crucial in ensuring transferability in systems with non-
uniform coordination numbers. Any good parametrization should include such a term, not
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only physically, but also mathematically, since the fitting of TB parameters is always carried
out using bulk phase data, for which there is no charge transfer. This formulation allows one
to include the effect of external fields and additional charges in a self-consistent manner.
The calculations are made slightly longer because of the iterations needed to reach self-
consistency. This problem can, however, be dealt with by using efficient algorithms such
as that of Broyden [14], in order to reach convergence and self-consistency of the total
charge after just a few iterations. It is also possible to treat magnetic systems by similar
self-consistent methods (e.g. within an unrestricted Hartree–Fock formalism) once the on-
site exchange parameters are known. Empirical values used in the past forU were shown
to be incorrect, since they cannot describe the correct charge distribution and eigenvalue
shifts. A simple method was demonstrated, from which one can easily extract the on-site
Coulomb termsU . It was also shown that off-diagonalU -terms, since they are quadratic in
the overlap, can be neglected; as a consequence, only diagonal elements of the Hamiltonian
matrix need to be corrected. Good agreement withab initio values was found, if either
the numerical value of the integral was used, as in reference [11], or they were fitted to
an atomic calculation, as was done here. In both cases, despite the slight difference in
eigenvalues and the charge distribution, the shifts of these quantities were very similar.
The exchange parameters were irrelevant in the examples considered, but might become
important for metals, for which the density matrix is long ranged.

We were also recently informed of two other self-consistent tight-binding calculations
which were presented at a recent Materials Research Society meeting [15]. The treatment
in the first paper, by Frauenheimet al, is very similar to ours, although the formalism is
not based on the density matrix, and the charges are for each atom rather than each orbital.
Frauenheimet al therefore have oneU -parameter for each atom, which, by the way, is not
specified. Furthermore, they have neglected the off-diagonal contributions of the density
matrix, which could become important for metals, in their formalism. The aim in that paper
was to treat charge transfer in neutral atoms in different environments. Here, on the other
hand, we show that for charged systems the eigenvalue and charge shifts are also reproduced
correctly. The second paper, by Saitoet al, treats charged fullerenes by adding aU -term to
the total energy. But there, again, one Hubbard parameter per C60 atom was used, which
might be justified for their purposes. In contrast, in this work, we are interested in more
detail of the electronic structure, and have considered the charge transfer for each orbital
separately.
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[3] Tomanek D and Schlüter M 1986Phys. Rev.B 54 4519
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